Повышающий преобразователь напряжения до 60в схема. Повышающий DC-DC преобразователь. Принцип работы. Особенности работы линейного регулятора напряжения

Двухтактный генератор импульсов, в котором за счет пропорционального токового управления транзисторами существенно уменьшены потери на их переключение и повышен КПД преобразователя, собран на транзисторах VT1 и VT2 (КТ837К). Ток положительной обратной связи протекает через обмотки III и IV трансформатора Т1 и нагрузку, подключенную к конденсатору С2. Роль диодов, выпрямляющих выходное напряжение, выполняют эмиттерные переходы транзисторов.

Особенностью генератора является срыв колебаний при отсутствии нагрузки, что автоматически решает проблему управления питанием. Проще говоря, такой преобразователь будет сам включаться тогда, когда от него потребуется что-нибудь запитать, и выключаться, когда нагрузка будет отключена. То есть, батарея питания может быть постоянно подключена к схеме и практически не расходоваться при отключенной нагрузке!

При заданных входном UВx. и выходном UBыx. напряжениях и числе витков обмоток I и II (w1) необходимое число витков обмоток III и IV (w2) с достаточной точностью можно рассчитать по формуле: w2=w1 (UВых. - UBх. + 0,9)/(UВx - 0,5). Конденсаторы имеют следующие номиналы. С1: 10-100 мкф, 6.3 В. С2: 10-100 мкф, 16 В.

Транзисторы следует выбирать, ориентируясь на допустимые значения тока базы (он не должен быть меньше тока нагрузки!!! ) и обратного напряжения эмиттер - база (оно должно быть больше удвоенной разности входного и выходного напряжений!!! ) .

Модуль Чаплыгина я собрал для того, чтобы сделать устройство для подзарядки своего смартфона в походных условиях, когда смартфон нельзя зарядить от розетки 220 В. Но увы... Максимум, что удалось выжать, используя 8 батареек соединенных параллельно, это около 350-375 мА зарядного тока при 4.75 В. выходного напряжения! Хотя телефон Nokia моей жены удается подзаряжать таким устройством. Без нагрузки мой Модуль Чаплыгина выдает 7 В. при входном напряжении 1.5 В. Он собран на транзисторах КТ837К.

На фото выше изображена псевдокрона, которую я использую для питания некоторых своих устройств, требующих 9 В. Внутри корпуса от батареи Крона находится аккумулятор ААА, стерео разъем, через который он заряжается, и преобразователь Чаплыгина. Он собран на транзисторах КТ209.

Трансформатор T1 намотан на кольце 2000НМ размером К7х4х2, обе обмотки наматывают одновременно в два провода. Чтобы не повредить изоляцию об острые наружные и внутренние грани кольца притупите их, скруглив острые края наждачной бумагой. Вначале мотаются обмотки III и IV (см. схему) которые содержат по 28 витков провода диаметром 0,16мм затем, так же в два провода, обмотки I и II которые содержат по 4 витка провода диаметром 0,25мм.

Удачи и успехов всем, кто решится на повторение преобразователя! :)

Всем привет. Хочу рассказать Вам, про повышающий модуль (Бустер) маленького размера… Подобные модули использовал, когда собирал . Потому взял еще «про запас», т.к применение в радиолюбительском хозяйстве всегда найдется, особенно где используется батарейное питание… Всем кому интересно, добро пожаловать под Кат.

Продавец на сайте дает такие характеристики:
1. Module Свойства:неизолированный модуль повышающий (BOOST) 2. Входное напряжение:1-5 В 3. Выходное напряжение:5.1 ~ 5.2 В 4. Выходной Ток:номинальная 1А ~ 1.5A (Один вход литиевая батарея) 5. эффективность Преобразования:до 96% (входное напряжение, тем выше эффективность) 6. Частота Переключения:500 КГц 7. пульсация Выходного сигнала:мв (Макс) 20 М Пропускная Способность (Вход 4 В, Выход 5.1 В 1А) 8. индикация Напряжения:СВЕТОДИОДНЫЕ фонари с нагрузкой (входное напряжение ниже, чем 2.7 В СВЕТОДИОДНЫЙ индикатор выключен) 9. Рабочая температура:промышленного класса (-40 По Цельсию до + 85цельсия) 10. повышение температуры при Полной нагрузке:30цельсия 11. Ток покоя:130uA 12. регулирование нагрузки:± 1% 13. регулирование напряжения:± 0.5% 14. динамическая скорость отклика:5% 200uS 15. защита от короткого замыкания:нет
Модуль доехал ко мне за месяц. Трек не отслеживался… Упакован был в стандартный желтый конверт с «пупыркой» внутри…
Вот реальная фотография модуля:


Модуль реально маленький, вот сравнение с другим повышающим модулем на XL6009


На микросхеме SOT23-6 имеется маркировка 31=N10 По этой маркировке поиск приводит на этот Похоже, что это именно этот Step-up DC/DC Converter RT9266
Вот принципиальная схема данного модуля (взята из Даташит):


Проверяем напряжение на выходе. Чуть больше 5В… Напряжение держит в диапазоне от 0.8В и до 4.5В (выше не ставил)






Теперь проверим максимальный ток, что способен выдавать модуль… На выход подключаем амперметр и переменный проволочный резистор… Выставляем напряжение заряженного литиевого аккумулятора - 3.9В.


При токе на выходе 200мА - потребление от аккумулятора будет 370мА


При токе в 300мА потребление от АКБ будет 610мА


При токе на выходе в 370мА - микросхема ушла в защиту… Собственно никакого 1 Ампера на выходе я не увидел… О чем, в принципе, догадывался заранее… Но для питания маломощных устройств требующих 5В от литиевого аккумулятора подойдет…

Вот собственно и всё… Выводы делайте сами.
Из плюсов:
1.) Мне понравился маленький размер модуля.
2.) На выходе особых помех осциллографом не увидел, обычные иглы…
Из минусов:
Заявленный китайцами ток в 1А не выдает…
Всем мира и добра… С наступающим Праздником Днем 1 Мая!!! Ура, товарищи!!!

Планирую купить +9 Добавить в избранное Обзор понравился +34 +55

Собрал недавно один цифровой прибор на микроконтроллере, и встал вопрос о его питании в походных условиях, ему надо напряжение 12 вольт, а ток примерно 50 мА. Тем более, он очень чувствителен к пульсации напряжения и из нескольких импульсных блоков питания, от какой-то аппаратуры он работать не захотел. Поискав в интернете, нашел один из самых оптимальных и дешевых вариантов: повышающий преобразователь DC-DC на микросхеме MC34063 . Для расчёта можно использовать программу - калькулятор. Вставил параметры которые нужны (он может работать как повышающий и понижающий) и получил вот такой результат:

Напряжение питания микросхемы не должно превышать 40 вольт, а ток не более 1.5 А. Печатные платы есть в сети и под smd детали, но у меня их нет в наличии, поэтому решил делать свою. Обратите внимание, что там нарисованы два сопротивления по 0.2 Ом. У меня был только 5-ти ваттный, поэтому и делал под него, но если бы нашел по меньше впаял бы в другое место, а лишнее отрезал.

Вместо сопротивления на R1- 1.5 кОм, поставил подстроечный на 5 кОм, чтобы регулировать выходное напряжение. Кстати, регулирует в довольно приличных пределах от 7 до 16, можно и больше но конденсатор выходной стоит на 16 вольт, поэтому дальше не поднимал.

А теперь коротко работе преобразователя. Подал 3 вольта, отрегулировал (R1) выход 12 вольт - и это напряжение он держит при снижении питания до 2.5 вольта, и поднятии до 11 вольт!

Остаётся ещё добавить, что при питании от 2,5 В и нагрузке 20 мА, схема потребляет 220 мА. Другие характеристики, а также чертёж печатной платы, вы можете посмотреть на форуме.

Обсудить статью ПОВЫШАЮЩИЙ DC-DC ПРЕОБРАЗОВАТЕЛЬ

Встретился на просторах Ali весьма интересный понижающий преобразователь напряжения, с таким набором характеристик.

Вот что заявлено у продавца:
1.Input voltage range:5-36VDC
2.Output voltage range:1.25-32VDC adjustable
3.Output current: 0-5A
4.Output power: 75W
5.High efficiency up to 96%
6.Built in thermal shutdown function
7.Built in current limit function
8.Built in output short protection function
9.L x W x H =68.2x38.8x15mm

Про самые интересные фички этого преобразователя продавец или не сказал или не заострил на них внимание. А фички весьма интересные.

1. Встроенный вольтметр входного и выходного напряжений, амперметр и ваттметр, с функцией калибровки показаний. Функция калибровки для напряжения и тока работает независимо. Реальная точность показаний после калибровки получается в районе ~0.05v. Но об этом ниже.

2. Данный понижающий преобразователь умеет работать как в режиме стабилизации напряжения, так и в режиме стабилизации тока. По сути - это самый маленький и самый дешёвый лабораторный источник питания со встроенным мультиметром. К которому достаточно прицепить кроватку для аккумуляторов, чтобы получить готовое зарядное устройство любых типов аккумуляторов.

Была мысль использовать данный преобразователь как мощный преобразователь, способный утилизировать полную мощность солнечной батареи с напряжением в 6v. Так как использовать солнечную батарею планируется использовать вдали от цивилизации, где лишнего мультиметра с собой нет, очень хотелось найти преобразователь с наличием встроенного вольтметра-амперметра.

Понижающих преобразователей с функцией стабилизации тока, не боящихся КЗ, со встроенным вольтметром-амперметром совсем не большое предложение. Ближайшие конкуренты:

В общем, лучше ничего найти не удалось, и данный преобразователь был куплен. Через месяц пакет ждал на почте.

Первые-же тесты данного преобразователя разочаровали. Оказалось, что хотя сам преобразователь начинает работать при входящих напряжениях выше 3.2v, то вот с вольтметром была беда. Врал вольтметр на НЕСКОЛЬКО ВОЛЬТ!!! Поэтому первым делом была сделана калибровка. Но оказалось, что калибровка не спасает. Если откалибровать вольтметр при 5v, то начинались проблемы с показаниями при 12v и наоборот.

Позже, эксперименты показали, что вольтметр показывает корректные значения, только если входное напряжение выше 6.5v. При снижении входного напряжения ниже 6.5v вольтметр начинал врать. Причём искажались абсолютно все показания при низком входном напряжении. Даже показания выходного напряжения начинали «плыть», хотя фактически они были стабильны. Была крайне неприятно наблюдать, когда при уменьшении входного напряжения с 6.5v до 4.2v встроенный вольтметр начинал показывать, что входящее напряжение растёт. Вот пример цифр, входящего напряжения и напряжения на встроенном вольтметре.

6.74v – 6.6v
6.25v – 6.7v
5.95v – 6.7v
5.55v – 6.8v
5.07v – 7.2v
4.61v – 7.5v
4.33v – 7.8v

При падении входного напряжения ниже 4.2v вольтметр отключался вообще.

Был создан диспут, но продавец оказался нормальным и не стал упираться, 50% от цены сразу вернул.

Если забыть про вольтметр, либо рассчитывать, что питающее напряжение будет всегда больше 7v, тогда можно считать, что преобразователь работает отлично. Но для моего случая, когда основной диапазон рабочих напряжений 4v-8v это можно было считать полным фиаско.

Но тут пришла осень, длинные хмурые вечера, и стало интересно посмотреть, а нельзя ли что-нибудь сделать.

Фото основных элементов преобразователя












Оказалось, что ряд важных элементов спрятан под дисплеем, выпаивать который без особой необходимости не хотелось. Поэтому полную схему преобразователя нарисовать не получилось. Тем более, что несмотря на кажущуюся простоту, схема не такая уж и простая. Потыкав в работащий преобразователь мультиметром, стало ясно, все проблемы начинаются, когда отдельная шина питания, со стабилизированным напряжением в 5v для вольтметра и прочих «мозгов» начинает проседать. За стабильные 5v отвечает чип LM317. И как только напряжения на его входе начинает не хватать для выдачи стабильных 5v, начинаются проблемы у вольтметра.

Проблема стала понятна, но решение её не казалось таким уж простым. По идее, нужно заменить LM317 на какой-то аналог, который умеет не только понижать напряжение, но и повышать его. Аналог SEPIC преобразователя или подобного. Такие чипы есть, но они точно не будут совместимы по цоколёвке, они точно будут требовать дополнительную обвязку, да и цены на такие чипы обычно не гуманные. И тут пришла идея. А что если добавить плату повышающего преобразователя перед LM317. Тем более, что потребляемый ток «мозгами» совсем небольшой. В качестве такой платы идеально подходил преобразователь MT3608, обзоры которого есть или . Ещё одно неоспоримое достоинство MT3608 - это его цена. Сейчас на Али цена MT3608 начинается с 0.35$ и имеет тенденцию к ещё большему удешевлению.

Кроме цены, радует, то что для модификации нужно сделать минимум изменения на плате. Достаточно разрезать одну дорожку (1) и припаять три провода к MT3608 +Vin (2), -Vin (3) и +Vout (4).


Дополнительно, поверх дросселя MT3608 были намотаны несколько слоёв изоленты, чтобы выровнять высоту с подстроечным резистором. Плюс на самой плате MT3608 была добавлена перемычка для расширения диапазона регулировок потенциометром, и добавлен керамический конденсатор 10 мкф на выходе. В результате получилось так:



Полученный результат превзошёл все ожидания:

1. Значительно возросла точность показаний вольтметра-амперметра при входных напряжениях ниже 6.5v. Проще говоря, вольтметр стал работать как должен быть работать сразу. С учётом калибровки, можно выставить показания в нужном диапазоне в районе 0.05v. Хотя всё-же нужно заметить, что если точно выставить регион 5v, в районе 12v вольтметр будет врать в районе 0.3v.

2. Вольтметр теперь включается при 1.9v. Теперь можно видеть на встроенном вольтметре, момент включения силовой части преобразователя, при повышении входного напряжения выше 3.2v.

3. Теперь в случае перегрузки источника, это когда преобразователь пытается забрать от источника питания больше, чем тот может отдать, преобразователь стал работать значительно стабильнее. Силовая часть при перегрузке просаживает входное напряжение где-то до 3.45v, что вполне достаточно для питания «мозгов» преобразователя. Не происходит вход преобразователя в режим как-бы мерцания, когда напряжения не хватает для запуска «мозгов».

У данной модификации есть и пара недостатков:

1. Плата стала выше, поэтому чтобы не повредить «сэндвич», были вкручены шурупы, позволяющие устанавливать плату на ровную поверхность без риска.

2. Рабочий диапазон входных напряжений сократился. Ранее входное напряжение могло достигать 35v. Сейчас верхний предел снижен до 20v из-за ограничения MT3608 по входном напряжению. Но в моём случае это абсолютно не критично.