Lm317 схема включения даташит. Стабилизатор напряжения на LM317. Схема стабилизатора с регулируемым блоком питания

Ток на выходе блока питания может увеличиться вследствие уменьшения сопротивления нагрузки (простой пример, короткое замыкание), также изменение тока нагрузки происходит из-за изменения напряжения питания её. Стабилизатор тока на lm317 обеспечивает стабильность тока (ограничение тока) на выходе в случаях описанных выше.

Данный стабилизатор может быть применён в схемах питания светодиодов, зарядных устройствах (ЗУ), лабораторных источников питания и так далее.

Если, к примеру, рассматривать светодиоды, то необходимо учитывать тот факт, что для них нужно ограничивать ток, а не напряжение. На кристалл можно подать 12В и он не сгорит, при условии, что ток будет ограничен до номинального (в зависимости от маркировки и типа светодиода).

Основные технические характеристики LM317

Максимальный выходной ток 1.5А

Максимальное входное напряжение 40В

Выходное напряжение от 1.2В до 37В

Более подробные характеристики и графики можно посмотреть в на стабилизатор.

Схема стабилизатора тока на lm317

Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Минусом является низкий КПД (в счёт своей линейности), и поэтому происходит значительный нагрев кристалла микросхемы. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.

За величину тока стабилизации (ограничения) отвечает резистор R1. С помощью данного резистора можно выставить ток стабилизации, например 100мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный 100мА.

Сопротивление резистора R1 рассчитывается по формуле:

R1=1,2/Iнагрузки

Изначально необходимо определиться с величиной тока стабилизации. Например, мне необходимо ограничить ток потребления светодиодов равный 100мА. Тогда,

R1=1,2/0,1A=12 Ом.

То есть, для ограничения тока 0,1A необходимо установить резистор R1=12 Ом. Проверим на железе… Для проверки собрал схему на макетной плате. Резистор на 12 Ом искать было лень, зацепил в параллель два по 22 Ома (были под рукой).

Выставил напряжение холостого хода, равное 12В (можно выставить любое). После чего, я замкнул выход на землю, и стабилизатор LM317 ограничил ток 0,1А. Расчеты подтвердились.

При увеличении или уменьшении напряжения ток остается стабильным.

Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.

Если использовать данный стабилизатор тока на LM317 в лабораторном блоке питания, то необходимо устанавливать переменный резистор проволочного типа, простой переменный резистор не выдержит токи нагрузки протекающие через него.

Для ленивых представляю таблицу значений резистора R1 в зависимости от нужного тока стабилизации.

Ток R1 (стандарт)
0.025 51 Ом
0.05 24 Ом
0.075 16 Ом
0.1 13 Ом
0.15 8.2 Ом
0.2 6.2 Ом
0.25 5.1 Ом
0.3 4.3 Ом
0.35 3.6 Ом
0.4 3 Ома
0.45 2.7 Ома
0.5 2.4 Ома
0.55 2.2 Ома
0.6 2 Ома
0.65 2 Ома
0.7 1.8 Ома
0.75 1.6 Ома
0.8 1.6 Ома
0.85 1.5 Ома
0.9 1.3 Ома
0.95 1.3 Ома
1 1.3 Ома

Таким образом, применив галетный переключатель и несколько резисторов, можно собрать схему регулируемого стабилизатора тока с фиксированными значениями.

Регулируемый стабилизатор напряжения LM317 выпускается в монолитных корпусах TO-220, TO-220FP, TO-3, D 2 PAK. Микросхема рассчитана на выходной ток 1.5 А, с регулируемым выходным напряжением в диапазоне от 1.2 до 37 В. Номинальное выходное напряжение выбирается с помощью резистивного делителя.

Основные характеристики LM317

  • Максимальное входное напряжение 40V
  • Диапазон выходного напряжения 1.2 to 37V
  • Выходной ток 1.5 А
  • Нестабильность по нагрузке 0.1%
  • Ограничение тока
  • Тепловое отключение
  • Температура эксплуатации 0 to 125 o C
  • Температура хранения -65 to 150 o C

Аналог LM317

Отечественным аналогом LM317 является микросхема KP142EH12A.

Конфигурация выводов


Схема регулируемого блока питания на LM317 будет выглядеть так:


Мощность трансформатора 40-50 Вт, напряжение вторичной обмотки 20-25 вольт. Диодный мост 2-3 A, конденсаторы на 50 вольт. C4 – танталовый, если такого нет, можно использовать электролит на 25 мкФ. Переменный резистор R2 позволяет регулировать выходное напряжение от 1,3 вольта, верхний предел выходного напряжения будет зависеть от напряжения вторичной обмотки трансформатора. На входе стабилизатора LM317 должно быть не больше 40 вольт, максимальное напряжение на выходе будет на 3 вольта меньше чем на входе. Диоды VD1 и VD2 служат для защиты LM317 в некоторых ситуациях.

Если требуется блок питания с фиксированным напряжением, то переменный резистор R2 нужно заменить на постоянный, номинал которого можно посчитать с помощью калькулятора LM317 или по формуле из datasheet LM317.


На микросхеме LM317 можно собрать стабилизатор тока, номинал и мощность резистора R1 считается с помощью калькулятора LM317. Эту схему используют в качестве источника питания для мощных светодиодов.

Зарядное устройство на LM317 (схема из datasheet)


Данная схема зарядного устройства предназначена для 6 вольтовых аккумуляторов, но подбором R2 можно выставить нужное выходное напряжение для других аккумуляторов. При номинале R3 равном 1 Om ограничение зарядного тока будет на уровне 0,6 A.

LM317 - это недорогая микросхема стабилизатор напряжения со встроенной защитой от короткого замыкания на выходе и от перегрева, на LM317 может быть изготовлен простой в сборке линейный стабилизатор постоянного напряжения которое м.б. регулируемым. Такие микросхемы бывают в разных корпусах например в ТО-220 или в ТО-92. Если корпус ТО-92 то последние две буквы названия будут LZ т.е. так: LM317LZ, цоколёвки этой микросхемы в разных корпусах различаются поэтому нужно быть внимательнее, также существуют такие микросхемы в smd корпусах. Заказать LM317LZ оптом небольшой партией можно по ссылке: LM317LZ (10шт.) , LM317T по ссылке: LM317T (10шт.) . Рассмотрим схему стабилизатора:

Рисунок 1 - Стабилизатор постоянного напряжения на микросхеме LM317LZ


Данный стабилизатор помимо микросхемы содержит ещё 4 детали, резистором R2 регулируется напряжение на выходе стабилизатора. Для простоты сборки можно воспользоваться схемой:

Рисунок 2 - Стабилизатор постоянного напряжения на микросхеме LM317LZ


Все стабилизаторы постоянного напряжения делятся на 2 типа это:
1) линейные (как например в нашем случае т.е. на LM317),
2) импульсные (с большими КПД и для более мощных нагрузок).
Принцип работы линейных (не всех) стабилизаторов можно понять из рисунка:

Рисунок 3 - Принцип работы линейного стабилизатора


Из рисунка 3 видно то что такой стабилизатор представляет собой делитель нижним плечом которого является нагрузка а верхним сама микросхема. Напряжение на входе меняется и микросхема изменяет своё сопротивление так чтобы на выходе напряжение было неизменным. Такие стабилизаторы обладают низким КПД т.к. часть энергии теряется на микросхеме. Импульсные стабилизаторы тоже представляют собой делитель только у них верхнее (или нижнее) плечо может либо иметь очень низкое сопротивление (открытый ключ) либо очень высокое (закрытый ключ), чередованием таких состояний создаётся ШИМ с высокой частотой а на нагрузке напряжение сглаживается конденсатором (и/или ток сглаживается дросселем), таким образом создаётся высокое КПД но из за высокой частоты ШИМа импульсные стабилизаторы создают электромагнитные помехи. Существуют также линейные стабилизаторы в которых элемент осуществляющий стабилизацию ставиться параллельно нагрузке - в таких случаях этим элементом обычно является стабилитрон и для того чтобы осуществлялась стабилизация на это параллельное соединение подаётся ток от источника тока, источник тока делается путём установки последовательно с источником напряжения резистора с большим сопротивлением, если напряжение подавать на такой стабилизатор непосредственно то стабилизации не будет а стабилитрон скорее всего перегорит.

В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337 . Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.

Но! Часто бывает, при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.

Как получить от этих микросхем максимум и избежать типовых ошибок?

Об этом по-порядку:

Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337 - регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.

Обращаю особое внимание, что цоколёвки у этих микросхем различные !

Увеличение по клику

Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:

Uвых=1,25*(1+R1/R2)+Iadj*R1

где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.

Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.

Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.

Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!
1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:

  • Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
  • Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ. Это увеличивает подавление пульсаций на 15-20дБ. Установка емкости больше указанного значения ощутимого эффекта не даёт.

Схема примет вид:

2. При выходном напряжении больше 25В в целях защиты микросхемы, для быстрого и безопасного разряда конденсаторов необходимо подключить защитные диоды:

Важно: для микросхем LM337 полярность включения диодов следует поменять!

3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.

Получаем итоговый вариант схемы:

Увеличение по клику

4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В !

Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.

5. Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:

Увеличение по клику

Пояснения к схеме:

  1. длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см . Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
  2. для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой /проводником (участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
  3. проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
  4. так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).

Удачного творчества!

14 комментариев к “Регулируемые стабилизаторы LM317 и LM337. Особенности применения”

  1. Главный редактор:
    Август 19, 2012

    Отечественные аналоги микросхем:

    LM317 — 142ЕН12

    LM337 — 142ЕН18

    Микросхема 142ЕН12 выпускалась с разными вариантами цоколёвки, так что будьте внимательны при их использовании!

    В связи с широкой доступностью и низкой стоимостью оригинальных микросхем

    лучше не тратить время, деньги и нервы.

    Используйте LM317 и LM337.

  2. Сергей Храбан:
    Март 9, 2017

    Здравствуйте, уважаемый Главный Редактор! Я у Вас зарегистрирован и мне тоже очень хочется прочесть всю статью, изучить Ваши рекомендации по применению LM317. Но, к сожалению, что-то не могу просмотреть всю статью. Что мне необходимо сделать? Порадуйте меня, пожалуйста, полной статьей.

    С уважением Сергей Храбан

  3. Главный редактор:
    Март 10, 2017

    Теперь радует?

  4. Сергей Храбан:
    Март 13, 2017

    Я Вам очень благодарен, спасибо большое! Всех благ!

  5. Oleg:
    Июль 21, 2017

    Уважаемый главный редактор! Собрал двух полярник на lm317 и lm337. Все прекрасно работает за исключением разности напряжений в плечах. Разница не велика, но осадок имеется. Не могли бы Вы подсказать, как добиться равных напряжений, а главное причина подобного перекоса в чем. Заранее благодарен Вам за ответ. С пожеланием творческих успехов Олег.

  6. Главный редактор:
    Июль 21, 2017

    Уважаемый Олег, разница напряжений в плечах обусловлена:

    2. отклонение значений задающих резисторов. Следует помнить, что резисторы имеют допуски 1%, 5%, 10% и даже 20%. То есть, если на резисторе написано 2кОм, его реально сопротивление может быть в районе 1800—2200 Ом (при допуске 10%)

    Даже если Вы поставите многооборотные резисторы в цепи управления и с их помощью точно выставите необходимые значения, то... при изменении температуры окружающей среды напряжения всё равно уплывут. Так как резисторы не факт что прогреются (остынут) одинаково или изменяться на одинаковую величину.

    Решить Вашу проблему можно, используя схемы с операционными усилителями, которые отслеживают сигнал ошибки (разницу выходных напряжений) и производят необходимую корректировку.

    Рассмотрение таких схем выходит за рамки данной статьи. Гугл в помощь.

  7. Oleg:
    Июль 27, 2017

    Уважаемый редактор!Благодарю Вас за подробный ответ, который вызвал уточнения- насколько критично для унч, предварительных каскадов, питание с разностью в плечах в 0,5- 1 вольт? С уважением Олег

  8. Главный редактор:
    Июль 27, 2017

    Разность напряжений в плечах чревата в первую очередь несимметричным ограничением сигнала (на больших уровнях) и появлением на выходе постоянной составляющей и др.

    Если тракт не имеет разделительных конденсаторов, то даже незначительное постоянное напряжение, появившееся на выходе первых каскадов, будет многократно усилено последующими каскадами и на выходе станет существенной величиной.

    Для усилителей мощности с питанием (обычно) 33-55В разница напряжений в плечах может быть 0,5-1В, для предварительных усилителей лучше уложиться в 0,2В.

  9. Oleg:
    Август 7, 2017

    Уважаемый редактор! Благодарю вас за подробные, обстоятельные ответы. И, если позволите, еще вопрос: Без нагрузки разность напряжений в плечах составляет 0,02- 0,06 вольт. При подключении нагрузки положительное плечо +12 вольт, отрицательное -10,5 вольт. С чем связан такой перекос? Можно ли подстроить равенство выходных напряжений не на холостом ходу, а под нагрузкой. С уважением Олег

  10. Главный редактор:
    Август 7, 2017

    Если делать всё правильно, то стабилизаторы надо настраивать под нагрузкой. МИНИМАЛЬНЫЙ ток нагрузки указан в даташите. Хотя, как показывает практика, получается и на холостом ходу.

    А вот то, что отрицательное плечо проседает аж на 2В, это неправильно. Нагрузка одинаковая?

    Тут либо ошибки в монтаже, либо левая (китайская) микросхема, либо что-то ещё. Ни один доктор не будет ставить диагноз по телефону или переписке. Я тоже на расстоянии лечить не умею!

    А Вы обратили внимание что у LM317 и LM337 разное расположение выводов! Может в этом проблема?

  11. Oleg:
    Август 8, 2017

    Благодарю Вас за ответ и терпение. Я не прошу детального ответа. Речь идет о возможных причинах, не более. Стабилизаторы нужно настраивать под нагрузкой: то есть, условно, я подключаю к стабилизатору схему, которая будет от него запитываться и выставляю в плечах равенство напряжений. Я правильно понимаю процесс настройки стабилизатора? С уважением Олег

  12. Главный редактор:
    Август 8, 2017

    Олег, не очень! Так можно схему спалить. На выход стабилизатора нужно прицепить резисторы (нужной мощности и номинала), настроить выходные напряжения и лишь после этого подключать питаемую схему.

    По даташиту у LM317 минимальный выходной ток 10мА. Тогда при выходном напряжении 12В на выход надо повесить резистор на 1кОм и отрегулировать напряжение. На входе стабилизатора при этом должно быть минимум 15В!

    Кстати, как запитаны стабилизаторы? От одного трансформатора/обмотки или разных? При подключении нагрузки минус проседает на 2В -а как дела на входе этого плеча?

  13. Oleg:
    Август 10, 2017

    Доброго здоровья, уважаемый редактор! Транс мотал сам, одновременно две обмотки двумя проводами. На выходе на обоих обмотках по 15,2 вольта. На конденсаторах фильтра по 19,8 вольт. Сегодня, завтра проведу эксперимент и отпишусь.

    Кстати у меня был казус. Собрал стабилизатор на 7812 и 7912, умощнил их транзисторами tip35 и tip36. В результате до 10 вольт регулировка напряжения в обоих плечах шла плавно, равенство напряжений было идеальным. Но выше...это было что- то. Напряжение регулировалось скачками. Причем поднимаясь в одном плече, во втором шло вниз. Причина оказалась в tip36, которые заказывал в Китае. Заменил транзистор на другой, стабилизатор стал идеально работать. Я часто покупаю детали в Китае и пришел к такому выводу: Покупать можно, но нужно выбирать поставщиков, которые продают радиодетали, изготовленные на заводах, а не в цехах какого- нибудь не понятного ИП. Выходит чуть дороже, но и качество соответствующее. С уважением Олег.

  14. Oleg:
    Август 22, 2017

    Доброго вечера, уважаемый редактор! Только сегодня появилось время. Транс со средней точкой, напряжение на обмотках 17,7 вольт. На выход стабилизатора повесил резисторы по 1 ком 2 ватта. Напряжение в обоих плечах выставил 12,54 вольта. Отключил резисторы, напряжение осталось прежним- 12,54 вольта. Подключил нагрузку (10 штук ne5532)стабилизатор работает прекрасно.

    Благодарю Вас за консультации. С уважением Олег.

Добавить комментарий

Спамеры, не тратьте своё время - все комментарии модерируются!!!
All comments are moderated!

Вы должны , чтобы оставить комментарий.